Metals in Biology: Applications of High-Resolution EPR to Metalloenzymes (Biological Magnetic Resonance, 29). Graeme Hanson, Lawrence Berliner

Metals in Biology: Applications of High-Resolution EPR to Metalloenzymes (Biological Magnetic Resonance, 29)



Download Metals in Biology: Applications of High-Resolution EPR to Metalloenzymes (Biological Magnetic Resonance, 29)



Metals in Biology: Applications of High-Resolution EPR to Metalloenzymes (Biological Magnetic Resonance, 29) Graeme Hanson, Lawrence Berliner. pdf ebook Publisher: Springer Language: English Page: 427 ISBN: 1441911383, 9781441911384

From the Back Cover

Metals in Biology Applications of High Resolution EPR to Metalloenzymes Prof. Graeme R. Hanson, University of Queensland and Prof. Lawrence J. Berliner, University of Denver Metal ions in biology is an ever expanding area in science and medicine involving metal ions in proteins and enzymes, their biosynthesis, catalysis, electron transfer, metal ion trafficking, gene regulation and disease. While X-ray crystallography has provided snapshots of the geometric structures of the active site redox cofactors in these proteins, the application of high resolution EPR spectroscopy in conjunction with quantum chemistry calculations has enabled, in many cases, a detailed understanding of a metalloenzymes mechanism through investigations of the geometric and electronic structure of the resting, enzyme-substrate intermediates and product complexes. This volume, Part II of a two-volume set demonstrates the application of high resolution EPR spectroscopy in determining the geometric and electronic structure of active site metal ion centers in iron sulfur cluster containing metalloproteins, mononuclear molybdenum metalloenzymes, manganese-containing enzymes and novel metalloproteins. The following chapters, written by experts in their fields, include: An Introduction: John Pilbrow Electron Magnetic Resonance of Iron-sulfur Proteins in Electron Transfer Chains - Resolving Complexity: Richard Cammack, Fraser MacMillan Catalysis and Gene Regulation: Helmut Beinert Iron Sulfur Clusters in Radical SAM Enzymes: Spectroscopy and Coordination: Serge Gambarelli, Etienne Mulliez, Marc Fontecave EPR Studies of Xanthine Oxidoreductase and Other Molybdenum-containing Hydroxylases: Russ Hille High Resolution EPR Spectroscopy of Mo-enzymes. Sulfite Oxidases: Structural and Functional Implications: John Enemark, Andrei Astashkin, Arnold Raitsimring Dimethylsulfoxide (DMSO) Reductase, a Member of the DMSO Reductase Family of Molybdenum Enzymes: Graeme Hanson, Ian Lane The Manganese-Calcium Cluster of the Oxygen Evolving System: Synthetic Models, EPR Studies, and Electronic Structure Calculations: Marcin Brynda, David Britt Binuclear Manganese-dependent enzymes: Sarah Smith, Kieran Hadler, Gerhard Schenk, Graeme Hanson, Nataša Mitic EPR of Cobalt-Substituted Zinc Enzymes: Brian Bennett Hyperfine and Quadrupolar Interactions in Vanadyl Protein and Model Complexes. Theory and Experiment: Sarah Larsen, Dennis Chasteen

About the Author

Prof. Graeme Hanson, located in the Centre for Magnetic Resonance at the University of Queensland, has applied a unique synergistic approach involving both theoretical and experimental aspects of multifrequency continuous wave and pulsed EPR spectroscopy to structurally (geometric and electronic) characterise the metal binding sites in metalloenzymes and transition metal ion complexes. The development and commercialisation of the XSophe-Sophe-XeprView (CW EPR) and Molecular Sophe(CW EPR, Pulsed EPR and ENDOR) computer simulation software suites has been crucial in the characterisation of these biological inorganic systems.   Dr. Lawrence J. Berliner is currently at the Department of Chemistry and Biochemistry, University of Denver, where he was Professor and Chair for the past 8 years. He retired from The Ohio State University, where he spent a 32-year career in the area of biological magnetic resonance (EPR and NMR). He has been recognized by the International EPR Society with the Silver Medal for Biology/Medicine in 2000. He also received the Lifetime Achievement Award in Biological EPR Spectroscopy at EPR-2005. He is the Series Editor for Biological Magnetic Resonance, which he launched in 1979.


Advances in Cryptology - EUROCRYPT 2006, 25 conf book download
Self-Consistent Methods for Composites: Vol.2 Wave Propagation in Heterogeneous Materials (Solid Mechanics and Its Applications) ebook download
Public Management and Administration: An Introduction download pdf